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Abstract—The Web of Things (WoT) represents a com-
plex ecosystem of interconnected devices that exchange vast
amounts of data, enabling advanced applications essential
for various industrial and social processes. These applica-
tions face stringent security requirements due to the open
nature of the Internet of Things (IoT) ecosystem and the
widespread deployment of devices in public environments,
posing significant challenges in safeguarding against malicious
activities. FIWARE has established itself as a leading IoT
infrastructure standard, offering robust security and access
control through key components that facilitate authentication,
access management, and secure data transmission. However,
traditional authentication methods cannot be implemented at
end-device level, posing significant risks. This study bridges
critical gaps by seamlessly integrating Self-Sovereign Identity
(SSI) into FIWARE by incorporating an innovative delegate
node designed to enhance the computational capabilities
of resource-constrained IoT devices while adhering to SSI
design principles. By deploying an SSI-compliant agent on
a gateway node and utilizing keys stored on devices with
minimal memory—requiring only 520 KB of SRAM—via
MQTT, this approach demonstrates its feasibility both in
terms of performance and security. The results indicate an
average session key generation and authentication time of
2.573 seconds, enabling mutual authentication between the
application and the end device, making it suitable for real-
world scenarios. Also, we provide a formal verification for the
proposed protocol using the ProVerif model checking tool to
check and validate our approach.

Index Terms—IoT, Self-Sovereign Identity, Authentication,
FIWARE, Decentralized Systems, MQTT

I. INTRODUCTION

Networks including Internet of Things (IoT) devices
are increasing the complexity by including interconnected
devices that exchange large volumes of data, enabling
advanced applications based on information and commu-
nication technologies (ICT). These applications, which are
essential for various industrial and social processes, have
particularly stringent security requirements due to their
critical role in mission-critical contexts. The open nature
of the IoT ecosystem and the pervasive distribution of
devices in public spaces present significant challenges in
terms of protection against malicious activities. Physical
layer attacks [1], as well as, attacks to low-energy com-
munication protocols [2], can potentially disrupt the entire
architecture. Ensuring the security and privacy of the entire

sensing loop at edge and end devices is crucial to prevent
potential attacks from compromising local applications and
propagating them to cloud services or external systems [3].

In the context of secure device and data management,
FIWARE [4] has emerged as a standard reference for IoT
infrastructure, providing an open-source platform designed
to ensure security and access control. FIWARE integrates
various key components that work in synergy to enable
authentication, access control, and secure information trans-
mission. A typical scenario involves IoT device enrollment
by application and then the device sending the collected
data to FIWARE. This process ensures that only authorized
devices can interact with the system, delegating trust over-
enrolled devices to the application, thereby providing ef-
fective protection against unauthorized access and enabling
secure information management.

Open and Agile Smart Cities (OASC) demonstrates the
expansion of FIWARE by developing one of the most
famous global communities that is able to connect cities
worldwide to enhance standardization and the usage of IoT-
based technologies, by leveraging FIWARE as a central
framework [5]. FIWARE authentication is splitted between
user and device authentication. If by user side the creden-
tials such as username and password are exchanged for a
token according to OAuth2 protocol, creating an almost
secure authentication; the approach is slightly different
for the IoT devices. FIWARE provides certain security
mechanisms, such as the Wilma PEP-Proxy, to enhance
application security and protect against malicious users.
Typically, the PEP-Proxy filters incoming requests; if the
token in the request is valid, it forwards the request to
the backend. Otherwise, it responds with an unauthorized
status code. Anyway, applications are required to register
devices, handle their authentication, and ensure secure data
collection. This imposes excessive responsibilities on the
application, creating a potential single point of failure. Fur-
thermore, there are no assurances regarding the reliability
of authentication performed by the application.

Due to the lack of standardization in how applications
implement security in their interactions with IoT devices,
this manuscript proposes a novel approach based on de-
centralized authentication. Self-Sovereign Identity (SSI)



is gaining interest in user-centric and device-centric au-
thentication by empowering entities with a Decentralized
Identifier (DID) used for public key-based authentication.
The DID is typically associated with a set of attributes,
creating the so-called Verifiable Credentials (VC) used to
assess authorization and authentication in a decentralized
context. SSI significantly enhances system security by en-
abling entities to directly own and manage their credentials,
thus reducing the risks associated with password-based
attacks. DIDComm is the protocol used for the exchange
of DID-related information in a decentralized environment.
Anyway, low-power devices struggle to keep up with the
overhead introduced by DIDComm.

In this work, we propose the integration of SSI with
memory-constrained devices, leveraging the concepts of
DIDComm within an MQTT-aided communication frame-
work. This approach ensures accessibility for devices that
currently struggle to support asymmetric encryption due to
limited energy and memory resources. The main contribu-
tions of this paper are summarized as follows:

• Propose a novel lightweight decentralized FIWARE-
compliant authentication and data encryption mecha-
nism that enhances security at both the application and,
consequently, the IoT device levels.

• Formally evaluate the protocol for exchanging creden-
tials between the application and IoT devices against
authentication, secrecy, and forward secrecy attacks.

• Analyze the performance on constrained IoT devices,
demonstrating the protocol’s capabilities and effective-
ness in a typical data collection process.

The manuscript is organized into five sections. Section
2 reviews the state-of-the-art in decentralized authentica-
tion within the Internet of Things (IoT) domain. Section
3 presents the proposed architecture, detailing its design
principles, components, and communication protocol. In
Section 4, we conduct a comprehensive analysis of the pro-
posed architecture, evaluating its performance and security.
Finally, Section 5 concludes the manuscript by summarizing
the key findings and outlining potential directions for future
research in decentralized authentication for IoT devices.

II. RELATED WORK

Decentralized authentication in the IoT domain is a rele-
vant topic, and different research directions have opened up
for solving the problem of energy- and memory-constrained
devices. Fan et al. describe DIAM-IoT [6], a decentralized
Identity and Access Management (IAM) framework for
IoT, designed to address interoperability and data-sharing
challenges in a global ecosystem characterized by a large
number of devices and users. While DIAM-IoT promotes
seamless interaction among heterogeneous IoT platforms,
it does not define a clear mechanism for the implemen-
tation of the protocol in constrained IoT devices, which
cannot directly access the blockchain. Moreover, DIDs and
their keys are directly saved on the device, potentially
leading to misuse in case of physical attacks. On the
same line, Gebresilassie et al. [7] focus on developing a
decentralized identity management system for IoT devices.
Their approach enhances resilience by distributing trust and

mitigating single points of failure. However, the framework
primarily focuses on user identity management and does
not sufficiently consider the unique requirements of IoT de-
vices operating in untrusted environments, leaving questions
about its suitability for highly constrained devices.

Abubakar et al. [8] propose a blockchain-based approach
for identity and authentication schemes with MQTT pro-
tocol integration, utilizing Ethereum smart contracts to
automate authentication and authorization. Their evalua-
tion demonstrates reduced resource usage, with memory
utilization approximately 200MB less than TLS and CPU
usage during authentication reduced to 24% compared to
81% for TLS. However, the reliance on Ethereum’s block
mining process introduces significant delays, requiring two
blockchain transactions for authentication (challenge gen-
eration and verification), resulting in 26–30 seconds total
delay. While effective for enhancing trust and accountabil-
ity, this latency makes the scheme impractical for real-time
IoT applications. Khalid et al. [9] also leverage blockchain
but introduce fog computing to distribute the computational
load, achieving improved efficiency for IoT devices. Their
experimental setup involved a combination of laptops and
Raspberry Pi systems acting as fog and IoT nodes. The
framework demonstrated superior performance on resource-
constrained devices, with Raspberry Pi nodes requiring
only 24.77ms for registration requests and 0.09ms for data
message transmission. However, like in [8], the reliance
on Ethereum introduces approximately 14 seconds latency
per transaction due to the Proof of Work (PoW) consensus
mechanism, highlighting scalability concerns for real-time
or large-scale deployments.

Firstly formulation of decentralised authentication using
SSI has been proposed by Dixit et al. [10] in the context
of Industrial IoT (IIoT), integrating DIDs and VCs using
Ethereum and Hyperledger Indy. Their evaluation revealed
efficient credential verification times of 0.2–0.3s on a Hy-
perledger Indy setup with four nodes. However, the hybrid
approach introduces significant complexity, with Ethereum
integration requiring substantial storage and resource de-
mands, including 950KB for the DID registry smart contract
and 350KB for the Verifiable Claims Registry.

Fathalla et al. [11] also propose a lightweight SSI frame-
work, combining blockchain and secret sharing techniques
to improve security while reducing computational overhead.
Their evaluation on an emulated IoT network with Rasp-
berry Pi 4 devices achieved a latency in identity issuance
of between 0.4 and 0.6 seconds for 2 to 9 shares of
credentials. However, identity verification exhibited linear
increases in latency with more edge nodes, raising concerns
about scalability. Furthermore, encryption overhead was
excluded from the evaluation, leaving questions about the
performance of the framework under real-world conditions.

A more recent contribution is DAXiot by Philipp et
al. [12], which implements a decentralized authentication
scheme using DIDs and Selective Disclosure JSON Web
Tokens (SD-JWTs) within the MQTT 5.0 protocol. The
evaluation, conducted with a broker and subscriber on an
Intel Core i5 notebook and a publisher on a Raspberry Pi
3 Model B, demonstrated connection establishment times



of 115.8ms (21% slower than mutual TLS) and message
publishing times of 6.3ms (10% slower than mutual TLS).
Despite its strong focus on privacy and flexibility, DAXiot
relies on centralized components, such as a revocation
registry, and its suitability for highly resource-constrained
devices remains unexplored.

Despite the technological benefits of these solutions, sev-
eral limitations persist. Blockchain-based approaches, while
decentralized, often introduce high computational and stor-
age overhead, making them unsuitable for lightweight IoT
devices [13]. SSI frameworks frequently rely on blockchain,
which increases deployment costs and complicates their
adoption in resource-constrained environments. Further-
more, many existing solutions lack formal security veri-
fication to ensure the robustness of their protocols against
confidentiality, integrity, and authenticity threats. Limited
research has focused on integrating these advanced authen-
tication mechanisms with widely adopted IoT frameworks
such as FIWARE, as highlighted in [14] and [15].

These challenges underline the need for decentralized
authentication mechanisms that address the performance
and security issues of existing solutions while ensuring
compatibility with real-world IoT constraints.

III. SYSTEM MODEL

This section outlines the architecture of the proposed SSI-
enabled authentication framework for constrained IoT envi-
ronments integrated with FIWARE. The system introduces
a delegated identity agent that decouples authentication
responsibilities from applications, reducing their complexity
and enhancing overall security. As depicted in Fig. 1,
the architecture consists of three primary layers: (1) the
FIWARE core and application layer, which in this work is
considered as a whole and only represented by the PEP
Proxy as an entry point, but it can be further exploited;
(2) the SSI gateway layer, identified as Aries Multi-Tenant
Agent (AMA); and (3) the constrained IoT Device layer.

Currently, FIWARE’s architecture places full responsibil-
ity for IoT device authentication and identity management
upon the applications, lacking standardized protocols. The
integration of SSI principles into this architecture addresses
this gap by enabling decentralized authentication processes.
In this enhanced workflow, the external service, through the
PEP Proxy initiates an authentication request forwarded to
the AMA. The AMA then performs the SSI-based authen-
tication steps necessary for securely validating IoT device
identities. The proposed architecture employs MQTT com-
munication with IoT end-devices and utilizes DIDComm to
secure applications authentication. The classical FIWARE
framework remains the core system used to manage data
and device interactions aligned with the WoT standards.

In the following sections, we provide detailed insights
into each component’s roles, interactions, and responsibil-
ities, clarifying how their coordinated functioning ensures
secure, efficient, and SSI-compliant authentication within
the extended FIWARE ecosystem.

A. Architecture
1) PEP Proxy: In the proposed architecture, FIWARE

interacts with the AMA through the Wilma PEP Proxy,

FIWARE Core Layer

PEP Proxy

KeyRock IDM Orion Context 
Broker IoT Agent

IoT Devices

Aries Multi-Tenant Agent

MQTT Broker

SSI Agent Internal Database

Key StorageKey Generation Encryption & 
Decryption

Fig. 1. Overview of the three-layer SSI-enhanced architecture for resource-
constrained IoT devices within a FIWARE environment.

in line with the conventional FIWARE framework. The
primary enhancement over the traditional model is the
introduction of new REST endpoints to facilitate secure
communication between the PEP Proxy and AMA.

Assuming that the IoT device has already been enrolled
and can be authenticated via its interaction with the AMA,
the PEP Proxy operates by forwarding authentication re-
quests originating from the FIWARE core to the AMA.
To support this functionality, the proxy is extended with
additional HTTPS-secured endpoints that manage both the
initial authentication phase and the responses issued by
the IoT device. In particular, the following endpoints are
exposed:

• initAuthentication: initializes the authentica-
tion procedure initiated by the FIWARE core (e.g.,
KeyRock).

• deviceKeyReceive: receives the session encryp-
tion key generated by the IoT device.

• deviceVPReceive: receives the Verifiable Presen-
tation (VP) issued by the IoT device.

Authentication is completed only after the Verifiable
Presentation is received and, ideally, validated by the FI-
WARE Identity Manager (KeyRock), which is responsible
for assessing the presented attributes. Once the device is
successfully authenticated, it is authorized to participate in
secure data sensing and transmission, ensuring that only
verified devices contribute to the system, thus improving
its overall integrity and security.

The interaction between the AMA and the PEP Proxy
is secured via a TLS session, which guarantees the confi-
dentiality and integrity of the exchanged data, and prevents
unauthorized access from untrusted domains.

As part of its standard functionality, the Wilma PEP
Proxy filters incoming requests targeting IoT devices. It
verifies the Proof of Possession (PoP) token, issued by
KeyRock, to ensure that each request is authorized. If vali-
dation succeeds, the request is forwarded to the respective
IoT device, encrypting the request using the pre-shared
session key established during the authentication. Once
received the request, the device processes the message and
returns a response. This response propagates through the
Context Broker and is ultimately delivered to the external
application.



While KeyRock may represent a potential single point
of failure, this risk can be mitigated by configuring short-
lived PoP tokens, thereby reducing the attack surface and
aligning with application-specific security requirements.
The establishment of session key between PEP and IoT
device prevent the AMA to know the message exchanged
while being able to authenticate the device succesfully.

2) Aries Multi-Tenant Agent: Typical applications inter-
act with the Wilma PEP Proxy through a backend managed
within the FIWARE core. While the PEP is responsible for
receiving authentication-related data from the IoT device,
the actual authentication procedure is delegated to the
AMA. In this revised design, the PEP sends a request to
the AMA specifying the resource the user intends to access,
identified by a URI. The AMA processes this request
as a Verifiable Presentation Request (VPR), following the
SSI paradigm. Unlike conventional SSI Agent implemen-
tations, the proposed architecture introduces an extended
version tailored to the specific requirements of resource-
constrained environments. A transport plugin based on the
MQTT protocol has been developed to enable communi-
cation with IoT devices, emphasizing both efficiency and
scalability. The AMA dynamically establishes MQTT topics
based on the requested URI. Each endpoint is internally
mapped to a corresponding Device ID and topic using
the AMA database. These values are passed as parameters
during MQTT client initialization and are used to define
device-specific communication channels. This functionality
is implemented by integrating a plugin into the SSI agent
framework, which registers a callback to manage MQTT
transport. The agent publishes authentication requests on
the designated topic and listens for responses on the same
channel. Once data is received, it is processed as part of the
SSI authentication flow. An advanced configuration enables
setting the Quality of Service (QoS) level to 2, ensuring that
each message is delivered exactly once and acknowledged.
This level of reliability is especially suited for critical IoT
applications, such as healthcare systems, where message
loss could compromise functionality or safety.

To emulate the DIDComm handshake over MQTT, the
standard protocol roles of requester and responder are
maintained. Typically, the requester initiates the session,
and the responder acknowledges and completes it. However,
in this implementation, the final complete (ACK) message
is omitted, as it carries no additional information and serves
only as a confirmation. In our architecture, the gateway
(AMA) acts as the requester and MQTT broker, while the
IoT device functions as the responder. Communication is
considered complete upon the creation of the MQTT topic
and the reception of a valid message from the device.

This dual-role architecture allows the AMA to function
simultaneously as an SSI agent and as an MQTT broker,
managing multiple IoT device sessions independently. For
each device, a dedicated MQTT client is instantiated, ef-
fectively bridging the constrained device with the FIWARE
infrastructure. Given the limited memory available on typ-
ical IoT devices (e.g., ESP32 with 520 KB of SRAM),
this model enables the device to securely use its locally
stored private key to encrypt credentials and generate proofs

without exceeding its resource limitations.
3) IoT Devices: Communication between IoT devices

and the Agent is established using the MQTT protocol in its
unsecured variant, which does not rely on TLS. However,
as outlined in the following section, the proposed authenti-
cation protocol ensures confidentiality and integrity through
a combination of asymmetric and symmetric encryption
mechanisms, alongside the DIDComm messaging protocol.

The generation of a VP on a resource-constrained IoT
device requires a secure and lightweight cryptographic
stack. To meet this requirement, the proposed solution
employs the Edwards-curve Digital Signature Algorithm
(EdDSA) using ed25519 key pairs [16]. From the same
key material, x25519 keys are derived to support Elliptic
Curve Diffie-Hellman (ECDH) key exchange, allowing the
device and the agent to establish secure session keys [17].
This unified key strategy significantly reduces the memory
footprint, as it avoids the need to store and manage multiple
key types.

Once the session keys are negotiated through ECDH,
according to DIDComm handshake, the IoT device pro-
ceeds to encrypt the VC received by the AMA, and sign
the presentation data. To perform authenticated encryption,
the protocol uses the ChaCha20-Poly1305 algorithm [18].
ChaCha20 offers both energy efficiency and enhanced resis-
tance to certain cache-timing attacks compared to traditional
ciphers like AES, making it a robust choice for heteroge-
neous IoT environments.

The Poly1305 component complements ChaCha20 by
providing message authentication. It generates a Message
Authentication Code (MAC) that ensures the integrity of the
encrypted payload. This guarantees that any modification of
the ciphertext will be detected, a critical requirement for the
trustworthy generation and transmission of VPs.

Altogether, this cryptographic pipeline enables the IoT
device to securely construct, sign, and transmit a Verifiable
Presentation over an insecure MQTT channel, fulfilling the
requirements of SSI while remaining compatible with the
device’s resource constraints.

B. Authentication Protocol

The message flow required for delegate authentication
and encryption is illustrated in Fig. 2. In this context, we
adopt the reduction DIDx → pkx = pk(skx), which is
known to all participants, including the IoT Device. The
Aries Multi-Tenant Agent (AMA), identified by its public
DIDAMA, is equipped with an MQTT Broker and serves
as both the Issuer and Delegator of devices identity.

The PEP, as defined in the FIWARE Architecture, is
enhanced with an SSI Wallet and identified by DIDP .
It acts as the Verifier of device identity. Each device is
represented by the AMA and possesses a private key skD.
Unlike the other actors, IoT Device DIDD is stored in the
AMA’s wallet, while its private key skD remains under the
device control, by saving it in its firmware. This design
ensures that skD is directly managed by the IoT device,
addressing the constraints that limit wallet implementation.

Communication between IoT Device and the AMA relies
on the MQTT protocol, but in its insecure version—without
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7 , pkD) then

if check(H(V P ),m′
8, pkA) then

kpi = (gia)p

IoT Device and Agent Authenticated

Communication Encrypted Using kpi with Proxy and kia with the Agent

Fig. 2. Proposed authentication protocol, describing the interactions
between the IoT device, Aries Multi-Tenant Agent (AMA), and PEP Proxy.

a TLS handshake. Consequently, this channel is vulnerable,
allowing any party to potentially send messages. In contrast,
the communication channel between the AMA and the
PEP is secured through a TLS handshake using HTTPS,
ensuring confidentiality and integrity for this segment of
the message flow. We will demonstrate how our protocol
achieves security by leveraging the session establishment
at the very beginning of the protocol.

1) m1: The PEP Proxy sends a request to access the
data of the IoT Device identified by uri. Since the
IoT Device cannont establish a direct connection, this
request is handled by AMA.

2) m2: AMA prepares to process the request by saving a
record in its Secure Storage. This record contains the
necessary transport information for communication
with the IoT Device and with the PEP Proxy. AMA
then sends a connection request, including a nonce
n1 and a session generator gai, encrypted using the
shared secret derived from the IoT Device’s public
key pkd and the AMA’s private key ska.

3) m3: The IoT Device generates a fresh exponent ia
and derives two symmetric keys. The first key kai
is generated by exponentiating the fresh exponent ia
with gai for secure communication with AMA in
m6, while the second key is derived using gp for
communication with the PEP Proxy. A third key kdi
is needed to encrypt the m3 for the AMA. The device
encrypts a message containing a new nonce n2, the
previously received nonce n1, and the fresh generator
gia with the novel shared secret kdi.

4) IoT Device Authentication: AMA verifies the received
nonce n′

1 against the previously generated value. If
the nonces match, the IoT Device is authenticated.
This is because if the IoT Device is able to access
the nonce, it is assumed it is the owner of skD,
considering the cyphering of m2.

5) m4: AMA generates the shared symmetric key kia. It
then forwards the received generator gai to the PEP
Proxy, encrypting the message with the shared secret
symkGK .

6) m5: The PEP Proxy creates a Verifiable Presentation
Request (VPR), which includes a nonce nc, the
required attribute attr, and the requested uri. This
VPR is sent over the secure channel to AMA.

7) m6: AMA prepares a signing request for the IoT
Device. It encrypts a message with kia that includes
the nonce n2 (received earlier from the device), the
VPR from m5, and the VC retrieved from the wallet
of DIDd.

8) Agent Authentication: The IoT Device authenticates
AMA by verifying that the received nonce n′

2 matches
the previously sent n2. This confirms that the IoT
Device is communicating with the intended responder.

9) m7: The IoT Device generates a signature over the
VPR and VC. This message, considered a Verifi-
able Presentation (VP), is encrypted with the session
shared secret kai and sent to AMA.

10) m8: AMA wraps the VP by signing it with its private
key ska and forwards the wrapped VP to the PEP



Proxy over the secure channel.
11) IoT Device and AMA Authentication: The PEP Proxy

authenticates both AMA and the IoT Device. It veri-
fies that the received nonce n′

c matches the previously
sent nc, and it confirms that the signatures on the VP
and the wrapped VP match the public keys of their
respective parties. After successful verification, the
PEP Proxy generates a shared session secret kpi with
the IoT Device.

12) Communication Encrypted Using kpi with Proxy and
kia with the Agent: All subsequent communication
between the PEP Proxy and the IoT Device occurs
over the MQTT channel. However, the communica-
tion is encrypted with the session secret kpi, ensuring
security. Notably, this shared secret is not accessi-
ble to AMA, maintaining the separation of roles.
Additionally, in the case AMA needs to exchange
information with the IoT Device, it will leverage
kia for the encryption and decryption, preserving the
access from the PEP Proxy.

IV. RESULTS

We evaluate the proposed architecture from both the
security and performance perspectives. To this end, we
first devise a formal security analysis, considering the
most relevant properties: secrecy, forward secrecy, and
mutual authentication. In the second part, we analyze the
performance of the protocol, taking into account the time
required for the generation of an asymmetric key pair, and
the encryption time required for the protocol.

A. Experimental Setup

To evaluate the system, we used a Raspberry Pi 4
equipped with a Quad-core Cortex-A72 (ARM v8) 64-
bit SoC running at 1.8GHz and 4GB of LPDDR4-3200
SDRAM, considered as the Aries Multi-Tenant Agent for
the distributed protocol. The IoT device is an ESP32
microcontroller, featuring a dual-core 32-bit processor with
a clock speed of 240 MHz and 520 KB of SRAM, specif-
ically designed for low-power applications with Wi-Fi and
Bluetooth connectivity. The role of the Proxy is an external
server powered by an Intel(R) Core(TM) i5-8250U CPU
@ 1.60GHz - 1.80GHz with 8GB of RAM. Aries Multi-
Tenant Agents were deployed on both ends leveraging the
TypeScript version of Credo.ts: the Raspberry Pi integrates
it in a server web which also publishes and subscribes over
an MQTT Broker, managed by itself; and the other side,
the PEP Proxy, integrates it in the existing library. The
Raspberry Pi acted as the multi-tenant node responsible for
managing decentralized protocols, while the ESP32 micro-
controller served as the constrained device to demonstrate
the feasibility of implementing secure communications even
on low-resource platforms.

B. Security Analysis

Based on a model reflecting the trust assumption defined
in Fig. 2, we now consider the security and privacy prop-
erties to verify that they hold. We leveraged ProVerif [19]
for the automatic verification of the proposed protocol by

dividing the analysis into (forward) secrecy and (mutual)
authentication.

1) Secrecy: The secrecy guarantees that the message
cannot be accessed from an attacker. In particular, the
secrecy must be guaranteed on three messages of the
considered protocol:

• Verifiable Credentials (m6): This message is sent from
the Agent to the IoT Device. This contains all the
information of the identity of IoT device and must
not be disclosed. The secrecy hold since this message
is sent only by encrypting it using a shared secret
kia only known to the IoT device, preventing the
disclosure of the message.

• Verifiable Presentation (m7): This message contains
the signature applied over the VC from the IoT De-
vice. The secrecy hold since the IoT Device send the
message to the Agent by encrypting it using the shared
secret kai known only to the IoT Device and Agent.

• Data Exchange (m9,m10): These messages contains
the data exchanged between Proxy and IoT Device,
and must be encrypted. The secrecy hold since the
communication is encrypted using the kpi known only
by the Proxy and the IoT Device.

2) Forward Secrecy: Forward secrecy, also known as
perfect forward secrecy, is a critical property of crypto-
graphic protocols that ensures the compromise of long-
term private keys does not affect the confidentiality of
past communications. In our context, this means that even
if an attacker later obtains the private key of an IoT
Device, AMA, or PEP Proxy, they cannot use it to decrypt
previously recorded messages. As previously described, the
symmetric keys that guarantee secrecy are derived from
asymmetric private keys. If these private keys are com-
promised, it is possible that some communications could
be exposed. To mitigate this risk, forward secrecy employs
session keys—ephemeral keys generated uniquely for each
session—to encrypt data. These keys are independent of
long-term credentials and are discarded after the session
concludes, preventing retroactive decryption of past ses-
sions even if long-term keys are compromised later.

In our protocol, during message m3, the IoT Device
selects a random ephemeral exponent, which is then used to
establish shared secrets with both the Agent and the Proxy.
These session-specific shared secrets are derived using the
Ephemeral ECDH key exchange, ensuring that they are not
dependent on any long-term keys.

However, while this property holds for the communica-
tion between the IoT Device and the Agent, it does not
fully extend to the communication between the IoT Device
and the PEP Proxy. Specifically, the analysis demonstrate
possible attacks over the data message m9. The motiva-
tion behind this attack come form the shared secret kpi,
which is generated from a combination of a fresh secret
(ephemeral exponent) and the Proxy’s long-term private
key. Consequently, if an attacker compromises the Proxy’s
private key at any time in the future, they can decrypt past
communications by accessing message m4, which includes
the exponent used in key derivation.



To enhance the protocol and ensure forward secrecy in
the IoT Device–Proxy communication, it is necessary for
the Proxy to also contribute a fresh ephemeral exponent.
This exponent should be included in message m5, along
with a digital signature generated using the Proxy’s long-
term private key skP to ensure authenticity. The Agent can
then forward this message to the IoT Device within message
m6. Upon receiving m6, the IoT Device can compute a
new session key based on the Proxy’s ephemeral value gsp

and its own ephemeral exponent ia. This newly derived
shared secret is then used exclusively for encryption and
decryption, providing forward secrecy even in the event of
a long-term key compromise.

TABLE I
SECRECY AND FORWARD SECRECY CHECKS OF THE PROTOCOL

Information Proposed Improved

Secrecy Fw. Secrecy Fw. Secrecy

Ver. Credentials (m6) ✓ ✓ ✓

Ver. Presentation (m7,m8) ✓ ✓ ✓

Data Exchange (m9) ✓ ✗ ✓

3) Mutual Authentication: Authentication property con-
sist in the ability of a party to assess the origin of a
message, and so the authenticity of an action. In the case
of decentralized authentication, this gain particular interest,
since there is no party responsible for the authentication,
which is processed at the communication level. We split
our analysis by taking into account the individual session
created between parties.

Proxy-Agent Authentication. The Agent authenticates
the Proxy at the beginning of the protocol using the HTTPS
Handshake.The Proxy is required to sign a nonce generated
by the Agent, confirming its authenticity. On the other
side, the Agent is authenticated only after the exchange
of message m8. m8 contains a signature applied over the
Verifiable Presentation (VP) sent from the IoT Device. This
approach is also used for the authentication of the IoT
Device by the Proxy.

Proxy-IoT Device Authentication. The Proxy authen-
ticates the IoT Device through the signature applied over
the VP. On the contrary, the IoT Device authenticates the
Proxy only when a future request is made. The IoT Device
encrypts the data exchange using the shared secret estab-
lished in the previous interaction. No additional signature
is required, as the asymmetric encryption applied over the
fresh generator is sufficient for authentication.

Agent-IoT Device Authentication. The Agent authen-
ticates the IoT Device at the beginning of the protocol
through the exchange of messages m1 and m2. Authentica-
tion is achieved by encrypting the nonce n1. The IoT Device
authenticates the Agent through the encryption applied over
the nonce n2. The IoT Device generates messages only
upon receiving the correct nonce, preventing attackers from
falsifying authentication.

TABLE II
AUTHENTICATION VERIFICATION BETWEEN PARTIES

Proxy Agent IoT Device

Proxy – ✓(m8) ✓(m9)

Agent ✓(m7) – ✓(m5)

IoT Device ✓(m10) ✓(m6) –

C. Performance Analysis

In this section, we aim to measure the overhead intro-
duced by two distinct aspects. First, we will evaluate the
impact of adding delegation to classical SSI Agents repre-
senting an innovation compared to traditional authentication
and data exchange models. Second, the analysis seeks to
quantify the additional overhead associated with integrating
CredoTS into the FIWARE platform in terms of connection
setup, verifiable presentation generation, and data sensing.

Table III presents the overhead introduced by the pro-
posed solution, analyzing different cryptographic operations
and their total execution time across an SSI agent and an
IoT device.

Similarly to traditional approach, SSI agent performs
most of the computationally intensive tasks, while the IoT
device incurs minimal overhead. Public key generation
requires 398.969 ms on the SSI agent, whereas the IoT
device completes it in only 8.540 ms, resulting in a total
time of 407.509 ms. Signature generation, the most time-
consuming operation, accounts for 875.874 ms on the SSI
agent and 12.118 ms on the IoT device, reaching a total of
887.992 ms. Encryption also demands a significant amount
of time, with 390.832 ms attributed to the SSI agent and
36.935 ms to the IoT device, leading to a total encryption
time of 427.767 ms. Similarly, decryption takes 387.641 ms
on the SSI agent and 35.227 ms on the IoT device, summing
up to 422.918 ms. To give a complete overview of the entire
process we give insights about the connection setup, and
the generation of verifiable presentation. Connection setup,
which involves decryption, public key generation, and en-
cryption, results in a total time of 1.258 seconds. Verifiable
presentation generation, executed after the establishment of
a secure connection incorporating both signature generation
and encryption, requires 1.315 seconds. Finally, the data
sensing process, considered as a complete loop of request
and response, takes 850.685 ms.

The results, summarized in Table III, indicate that the
implementation of SSI in a distributed setup introduces a
marginal processing time. In particular, the introduction
of a distributed approach only increases the distributed
authentication time of a marginal time, with respect to the
classical approach. Anyway, as a huge improvement, the
proposed approach is able to guarantee authentication and
confidentiality in 2.573 seconds. The results, also confirms
a good time for the data exchange process which is a results
comparable with similar approaches in the literature [12],
where connection must be established every time with 115.8
ms and 8ms for the publishing; compared with our approach
consisting of only 36.395ms for the encryption of the data,



averaged on 1KB of data, since connection is fixed once
for the entire session and does not need to be established
each time like in traditional MQTT/TLS approaches.

TABLE III
OVERHEAD INTRODUCED BY THE PROPOSED SOLUTION

SSI IoT Total
Agent Device

Public Key Gen. 398.969 ms 8.540 ms 407.509 ms
Signature Gen. 875.874 ms 12.118 ms 887.992 ms
Encryption 390.832 ms 36.935 ms 427.767 ms
Decryption 387.641 ms 35.227 ms 422.918 ms

Connection Setup (Decr. + Public Key Gen. + Encr.) 1.258 s
Verifiable Presentation Gen. (Sign. + Encr.) 1.315 s
Data Sensing (Decr. + Encr.) 850.685 ms

V. CONCLUSION

Authentication between the application and end device
is a critical component in FIWARE, demanding the first to
fully manage it. In this paper, we proposed a novel approach
to solve this criticality while taking into account the typical
resource challenges of IoT devices. The results presented in
this work demonstrate the effectiveness of MQTT as a low-
power protocol and a combination with DIDComm is able
to strengthen the security of the authentication loop. The
proposed approach not only overcomes existing technical
challenges but also opens new opportunities for future
device integration within the IoT ecosystem, improving a
more secure and resilient environment. In the future we
want to assess the quality of the solution in a high-density
context, in order to evaluate the impact of the MQTT choice
in the system design, also with respect to the choice of
Quality of Service (QoS) adopted by the broker. Further
analysis for scalability and heterogeneity across different
IoT devices will be provided. Optimization of the handling
of duplicate messages, as an alternative to traditional QoS
mechanisms, could further enhance the system’s overall
efficiency and resource utilization.

DATA AVAILABILITY
All source code and implementation details related to this study are

publicly available in the following GitHub repository: https://github.com/
biagioboi/distribuited-credo-ts.

ACKNOWLEDGMENT
This work was partially supported by project SERICS (PE00000014)

under the MUR National Recovery and Resilience Plan funded by the
European Union - NextGenerationEU.

REFERENCES

[1] Z. H. Toman, L. Hamel, S. H. Toman, M. Graiet, and D. C. G.
Valadares, “Formal verification for security and attacks in IoT
physical layer,” Journal of Reliable Intelligent Environments, vol. 10,
no. 1, pp. 73–91, 2024.

[2] S. Lakshminarayana, A. Praseed, and P. S. Thilagam, “Securing
the IoT Application Layer from an MQTT Protocol Perspective:
Challenges and Research Prospects,” IEEE Communications Surveys
& Tutorials, 2024.

[3] I. Singh and B. Singh, “Access management of IoT devices using ac-
cess control mechanism and decentralized authentication: A review,”
Measurement: Sensors, vol. 25, p. 100591, 2023.

[4] FIWARE Foundation, “FIWARE: The Open Source Platform for
Our Smart Digital Future.” https://www.fiware.org, 2020. Accessed:
2025-04-01.

[5] P. Salhofer, “Evaluating the FIWARE platform,” 2018.
[6] X. Fan, Q. Chai, L. Xu, and D. Guo, “DIAM-IoT: A Decentral-

ized Identity and Access Management Framework for Internet of
Things,” in Proceedings of the 2nd ACM international symposium
on blockchain and secure critical infrastructure, pp. 186–191, 2020.

[7] S. K. Gebresilassie, J. Rafferty, P. Morrow, L. Chen, M. Abu-Tair, and
Z. Cui, “Distributed, secure, self-sovereign identity for IoT devices,”
in 2020 IEEE 6th World Forum on Internet of Things (WF-IoT),
pp. 1–6, IEEE, 2020.

[8] M. Abdelrazig Abubakar, Z. Jaroucheh, A. Al-Dubai, and X. Liu,
“Blockchain-based identity and authentication scheme for MQTT
protocol,” in Proceedings of the 2021 3rd International Conference
on Blockchain Technology, pp. 73–81, 2021.

[9] U. Khalid, M. Asim, T. Baker, P. C. Hung, M. A. Tariq, and L. Raf-
ferty, “A decentralized lightweight blockchain-based authentication
mechanism for IoT systems,” Cluster Computing, vol. 23, no. 3,
pp. 2067–2087, 2020.

[10] A. Dixit, M. Smith-Creasey, and M. Rajarajan, “A Decentralized
IIoT Identity Framework based on Self-Sovereign Identity using
Blockchain,” pp. 335–338, IEEE, 2022.

[11] E. Fathalla and Y. Azab, “Towards a lightweight self-sovereign
identity framework for iot network in a zero trust environment,”
in 2024 IEEE 15th Annual Ubiquitous Computing, Electronics &
Mobile Communication Conference (UEMCON), pp. 335–341, IEEE,
2024.
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