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ABSTRACT
Internet of Things (IoT) devices are increasingly employed in moni-
toring and controlling both domestic and industrial infrastructures.
However, security measures are often neglected due to the compu-
tational resource limitations of these devices. Despite numerous
research initiatives aimed at developing Intrusion Detection Sys-
tems (IDS) for IoT, practical implementation-focused studies remain
scarce. The goal of this research is to develop an anomaly-based IDS,
or more precisely, a detection engine of an IDS, using a supervised
approach with three different neural network models: Sequential
Neural Network (SNN), Recurrent Neural Network (RNN), and Deep
Recurrent Neural Network (DRNN). The objective is to determine
whether it is feasible to create a high-performing IDS, characterized
by high accuracy, while simultaneously maintaining low resource
requirements— a critical aspect when deploying onmicrocontrollers
with limited hardware capabilities. The IDS must be capable of per-
forming multiclass classification to distinguish between normal
packet flows, DoS attacks, Probe attacks, and also binary classifi-
cations. To achieve this, the IDS is first trained and then tested on
the NSL-KDD dataset. Feature extraction is conducted using both
the Random Forest algorithm and the Shap algorithm. According
to the results presented in the final chapter, the most accurate IDS
utilizes the SNN model trained with features determined by Shap in
binary classification, achieving a precision level of 94.04%. This IDS,
when deployed on the ESP32-WROOM-32 microcontroller, reports
a minimum inference time of 0.226 ms, an average time of 3.198
ms, and a maximum time of 10.478 ms, requiring just over 8 KB of
SRAM for installation.

CCS CONCEPTS
• Security and privacy → Authentication; Privacy-preserving pro-
tocols;
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1 INTRODUCTION
The advent of the Internet of Things (IoT) has revolutionized the
way information is shared andmanaged, creating an interconnected
ecosystem of smart devices that permeatesmany aspects of daily life
[8]. While this pervasive interconnection offers significant benefits
in terms of efficiency and automation, it also poses new challenges,
particularly with regard to data security and the protection of IoT
networks [6]. Large-scale information sharing, made possible by
the rapid growth of the Internet, has led to an exponential increase
in data traffic. Today, the network generates an enormous amount
of data, estimated at around 5 quintillion bytes per day [11]. This
continuous flow of information poses a significant privacy and
security risk, especially considering that the data in question often
includes sensitive customer or business-related information, leading
to possible threats by malicious nodes. The concrete motivation
for the lack of security measures on these devices, as opposed to
traditional servers and workstations, is their limited computing and
energy resources.

In response to these challenges, Intrusion Detection System (IDS)
plays a key role in the detection and response of cyber threats.
In particular, anomaly-based IDS focuses on detecting abnormal
behavior w.r.t. normal system operation, offering a promising per-
spective for detecting malicious and unusual activity within IoT
environments.

Among all microcontrollers currently available in the IoT sce-
nario, ESP32-WROOM-DA is one of the preferred ones when tak-
ing into account performance and security. This microcontroller,
known for its low power consumption capabilities and flexibility,
offers a solid basis for the development of a decision engine for an
IoT-compatible IDS. In this context, this paper proposes the imple-
mentation of an anomaly-based IDS using the ESP32-WROOM-DA,
with the aim of developing a system capable of automatically de-
tecting suspicious behavior and intrusions in IoT networks. The
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development process includes creating meaningful data models
for the IoT context, pre-processing the data, selecting relevant fea-
tures, and implementing classification techniques to identify and
promptly respond to threats. Given the increasing number of vul-
nerabilities in the IoT landscape, our research offers significant
contributions:

• We evaluated three models, including Recurrent Neural Net-
work (RNN) and Sequential Neural Network (SNN), within
the context of anomaly-based Intrusion Detection Systems
(IDS). Our performance analysis reveals important insights
regarding the data used for classifying instructions.

• We assessed these models using a well-known and compre-
hensive dataset, such as NSL-KDD [12], thereby broadening
the application scenarios of anomaly-based IDS beyond their
previous limitation to MQTT communication [4][9].

• By combining the insights from the evaluation of the models
and the expanded application scenarios, our research demon-
strates the versatility and effectiveness of anomaly-based
IDS in addressing a broader range of IoT vulnerabilities.

The paper is structured into six sections. In the second section, we
will introduce related works in the field of IDS for the IoT context.
In the third section, we will discuss the proposed architecture for
anomaly-based IDS for the IoT, while in the fourth, we will moti-
vate the success of our research by discussing results and making
some considerations of the effectiveness and performance of the
implemented system. We conclude our paper with the conclusion
and future works.

2 RELATEDWORK
Recent efforts in the domain of IDS targeting IoT devices have
demonstrated a shift toward the deployment of these systems in
constrained environments. These approaches aim to address spe-
cific challenges related to energy efficiency, inference performance,
and model size, which are typical parameters to take into account
when designing an IoT system.

S. Hosseininoorbin et al. [3] investigated the use of convolutional
neural networks (CNNs) for NIDS on edge devices of the IoT. Their
study evaluated inference times and energy efficiency using the
ToN-IoT dataset, showcasing trade-offs between model complex-
ity and device performance. Results indicated that deeper CNN
architectures led to increased model size and energy consumption,
highlighting the need for optimized models for IoT deployment.

Idriss Idrissi et al. [4] explored the feasibility of CNN-based IDS
on low-power IoT devices like ESP32-WROOM-32. By leveraging
TensorFlow Lite for model conversion, they achieved high detection
accuracies while maintaining a compact model size suitable for
deployment on edge devices. The study demonstrated practical
implementations of CNN-based NIDS on various IoT hardware
platforms. Liam Daly Manocchio et al. [9] took a different approach
by employing machine learning techniques such as decision trees
for intrusion detection on MQTT-based IoT networks. Their work
focused on minimizing model size and achieving high detection
rates, emphasizing efficient utilization of limited resources on IoT
devices.

A recent study [1] addresses increasing cybersecurity attacks
on IoT systems by proposing an Intrusion Detection System to im-
prove security against DoS attacks using anomaly detection and ML
techniques. The study highlights IoT’s vulnerability due to its self-
configuring and open nature, making it susceptible to both insider
and outsider attacks. The IDS employs four supervised classifier
algorithms—Decision Tree (DT), Random Forest (RF), K Nearest
Neighbor (kNN), and Support Vector Machine (SVM)—and utilizes
two feature selection algorithms, the Correlation-based Feature
Selection (CFS) algorithm and the Genetic Algorithm (GA). The
IoTID20 dataset was used for training, with DT and RF classifiers
showing the best performance, particularly with features selected
by GA. However, this study does not use neural networks, which
are among the most powerful tools in the field of machine learning
for IDS.

In summary, recent studies have showcased various methods for
implementing IDS on IoT devices, leveraging machine learning and
deep learning techniques. These efforts highlight the importance
of optimizing models for specific hardware constraints while main-
taining robust intrusion detection capabilities. Our work aims to
build on these approaches, focusing on improving the efficiency
and performance of IDS on IoT devices.

3 METHODOLOGY
In this section, we present the methodology employed in our re-
search, focusing on the utilization of advanced neural network
models tailored for the specific task of anomaly-based intrusion
detection in IoT environments.

The main purpose of our study is to develop an advanced in-
trusion detection system based on neural networks for the IoT
environment. Our approach is based on the use of three main neu-
ral network architectures adapted for the specific purpose:

Sequential Neural Network (SNN): The SNN is a feedforward
neural network designed to process sequential data of fixed size
efficiently. This model is composed of densely connected layers
with specific activation functions. We use a three-layer architecture,
with the first layer consisting of a dense layer of 41 neurons with
ReLU activation, the second layer of a dense layer of 20 neurons
also with ReLU activation, and the third layer consisting of a dense
layer with a number of neurons corresponding to the output classes,
using softmax activation for multiclass classification. The SNN is
implemented using Keras, an API for high-level neural networks.
We chose the SNN because of its ability to process sequential data
of fixed size efficiently. This model is suitable for our application
because it can handle incoming network traffic data in a structured
manner, exploiting densely connected layers for final classification.

Recurrent Neural Network (RNN): The RNN is designed to
process sequential data while maintaining an internal state. This
model is particularly suitable for time series or sequence-based
task analysis [13]. Our RNN architecture includes a Long Short-
Term Memory (LSTM) layer with 41 nodes and ReLU activation,
a second LSTM layer with 20 nodes and 20% dropout to prevent
overfitting, and an output layer with appropriate activation based
on classification type (e.g., softmax for multiclass classification).
The RNN was chosen for its ability to maintain an internal state,
making it ideal for analyzing time series or sequential data. This
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model is particularly suitable for capturing temporal dependencies
in network traffic, using LSTM layers to handle input sequences.

Deep Recurrent Neural Network (DRNN): The DRNN ex-
tends the RNN architecture by incorporating multiple layers of
LSTM units to capture complex temporal patterns. Our DRNN ar-
chitecture includes two LSTM layers, the first with 41 nodes and the
second with 20 nodes, both with dropout regularization to mitigate
overfitting. The output layer is designed for binary or multiclass
classification tasks. The DRNN extends the RNN architecture by
incorporating multiple LSTM layers to capture complex temporal
patterns. We opted for the DRNN to explore whether the intro-
duction of multiple LSTM layers can improve anomaly detection
performance in the context of the IoT environment.

3.1 Dataset and Preprocessing
The dataset used to train and test the models is NSL-KDD [12],
which is a successor to the KDD99 dataset developed by the Uni-
versity of New Brunswick as part of the International Knowledge
Discovery and Data Mining Tools Competition in 1999. The dataset
features are listed in Table 2. NSL-KDD is designed as a cleaned-up
version of KDD99, aimed at providing a more balanced and suitable
dataset for intrusion detection system (IDS) development.

NSL-KDD comprises four subsets of data: KDDTrain+, KDDTest+,
KDDTrain+_20Percent, and KDDTest-21. For this study, we primar-
ily focus on the first two subsets, KDDTrain+ (training set) and
KDDTest+ (test set).

Table 1: Total rows and rows per attack type in NSL-KDD
dataset

Dataset Total Normal DoS Probe U2R R2L
KDDTrain+ 125,697 67,343 45,927 11,656 52 995
KDDTest+ 22,544 9,711 7,458 2,421 200 2,654

The total number of rows in the NSL-KDD dataset is over 148,000,
with a detailed distribution for each attack type. To ensure a bal-
anced analysis, the User-to-Root (U2R) and Remote-to-Local (R2L)
attack types are excluded from the analysis due to their limited
number of samples.

The choice of the NSL-KDD dataset is motivated by its breadth
and widespread use in the scientific literature for anomaly-based
intrusion detection system development. Additionally, the dataset’s
sample size allows for reliable classification. Table 3 shows the
precision of various works using the NSL-KDD dataset, highlighting
its effectiveness in research contexts.

Table 3 demonstrates the precision achieved by various authors
in the context of intrusion detection systems using the NSL-KDD
dataset. These results underscore the dataset’s effectiveness in cy-
bersecurity applications.

For training and evaluation, we utilized the NSL-KDD dataset,
which includes 42 features per record. This dataset was chosen
due to its suitability for anomaly detection tasks in network traffic
analysis. Our preprocessing steps involved:

• Feature selection to identify relevant input attributes.
• Normalization and scaling of input data.
• Partitioning the dataset into training and testing sets.

Table 2: Features of the NSL-KDD dataset

No. Feature Name No. Feature Name
1 duration 22 is_guest_login
2 protocol type 23 count
3 service 24 srv_count
4 flag 25 serror_rate
5 src_bytes 26 srv_serror_rate
6 dst_bytes 27 rerror_rate
7 land 28 srv_rerror_rate
8 wrong_fragment 29 same_srvrate
9 urgent 30 diff_srv_rate
10 hot 31 srv_diff_host_rate
11 num_failed_logins 32 dst_host_count
12 logged_in 33 dst_host_srv_count
13 num_compromised 34 dst_host_same_srv_rate
14 root_shell 35 dst_host_diff_srv_rate
15 su_attempted 36 dst_host_same_src_port_rate
16 num_root 37 dst_host_srv_diff_host_rate
17 num_file_creations 38 dst_host_serror_rate
18 num_shells 39 dst_host_srv_serror_rate
19 num_access_files 40 dst_host_rerror_rate
20 num_outbound_cmds 41 dst_host_srv_rerror_rate
21 is_host_login 42 label

Table 3: Precision of IDS works using the NSL-KDD dataset
in literature

Authors and References Publication Year Precision
Chuan-long et al. [15] 2017 83.49%
Jia et al. [5] 2017 83.58%
Abu Taher et al. [14] 2019 95.00%
Meliboev et al. [10] 2022 98.70%
Kasongo [7] 2023 88.13%
Chakrawarti et al. [2] 2023 99.95%

By leveraging these neural network architectures and prepro-
cessing techniques on the NSL-KDD dataset, we aimed to develop
an effective intrusion detection system for IoT environments.

The dataset underwent several preprocessing steps to prepare it
for training neural network models. Initially, the dataset contained
five attack classes, but the last two classes (U2R and R2L) were
excluded due to insufficient samples, which could lead to imbalance
and overfitting issues. Additionally, specific features (protocol_type,
service, and flag) and labels were encoded into numerical values to
make them compatible with the neural network models used for
training.

For feature selection, the Random Forest algorithm and Shap
(Shapley Additive Explanations) were employed to identify the
most informative features for training the models. The Random
Forest algorithm was used to assess feature importance, and the
top 15 features were selected based on their significance. Similarly,
Shap was utilized to extract important features, offering insights
into the impact of each feature on model performance.

The Random Forest algorithm evaluated feature importance,
resulting in the selection of the top 15 features based on their
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significance. These features were considered crucial for effective
model training and classification.

Furthermore, Shap was used to identify and extract important
features, providing detailed insights into each feature’s impact on
model performance.

The tables below summarize the most important features iden-
tified by the Random Forest and Shap methods for each neural
network model, providing valuable insights into the dataset’s key
characteristics for effective model training and intrusion detection.

Table 4: Random Forest Feature Importance

No. Feature Name
1 src_bytes
2 same_srv_rate
3 flag
4 diff_srv_rate
5 dst_bytes
6 count
7 dst_host_serror_rate
8 dst_host_diff_srv_rate

Table 5: Shap Feature Importance for SNN

No. Feature Name
1 dst_host_rerror_rate
2 src_bytes
3 dst_host_srv_count
4 flag
5 logged_in
6 dst_host_same_srv_rate
7 same_srv_rate
8 same_srv_rate

Table 6: Shap Feature Importance for RNN

No. Feature Name
1 dst_bytes
2 same_srv_rate
3 logged_in
4 dst_host_rerror_rate
5 dst_host_srv_rerrorrate
6 src_bytes
7 dst_host_same_src_port_rate
8 dst_host_same_srv_rate

These tables summarize the most important features identified
by the Random Forest and Shap methods for each neural network
model, providing valuable insights into the dataset’s key character-
istics for effective model training and intrusion detection.

The classification phase represents the culmination of model
development, allowing us to evaluate the efficacy of our neural
network models in both binary and multiclass scenarios. This work

Table 7: Shap Feature Importance for DRNN

No. Feature Name
1 dst_bytes
2 dst_host_rerror_rate
3 src_bytes
4 service
5 same_srv_rate
6 logged_in
7 dst_host_srv_serror_rate
8 dst_host_srv_rerror_rate

adopts a versatile approach, accommodating both types of clas-
sification tasks through appropriate model adaptations. Figure 1
illustrates the general architecture of our neural network models
used for these classification tasks.

For binary classification, our models are tailored to utilize a sig-
moid activation function in the output layer. The sigmoid function
is defined as:

𝜎 (𝑢) = 1
1 + 𝑒−𝑢

This activation function compresses the output values between 0
and 1, providing a clear indication of the likelihood of an instance
belonging to a specific class. Values closer to 1 represent a confident
prediction of normalcy, while values closer to 0 denote an anomaly.

In contrast, our models are equipped with a softmax activation
function in the output layer for multiclass classification tasks. The
softmax function transforms the model’s raw outputs into a proba-
bility distribution across multiple classes. It is expressed as:

𝜎 (𝑧𝑖 ) =
𝑒𝑧𝑖∑𝐾
𝑗=1 𝑒

𝑧 𝑗

where 𝐾 represents the total number of classes. The predicted class
is determined by selecting the index with the highest probability
value (argmax(𝜎 (𝑧))).

The subsequent phase involves converting our trained neural
network models into a format suitable for deployment on the ESP32-
WROOM-DA microcontroller. This conversion process is facilitated
by the convert_model method provided by the EveryWhereML
package. The resulting model is transformed into a header file
(snn_model.h) optimized for microcontroller deployment.

It’s important to note that only Sequential Neural Network (SNN)
models leveraging essential SHAP (Shapley Additive Explanations)
features are deployed onto the microcontroller. These models are
selected based on their superior accuracy and computational effi-
ciency, making them ideal for resource-constrained environments.

This comprehensive approach ensures that our models are not
only effective in classification accuracy but also optimized for real-
world deployment scenarios, particularly on microcontroller plat-
forms with limited computational resources.

4 RESULTS
The models were initially evaluated using the following metrics:

• Accuracy: Measures the fraction of correct predictions out of
the total number of predictions made by the model. Accuracy
provides a general measure of overall model performance.
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Figure 1: General structure of neural network models used
in binary and multiclass classification tasks.

• Positive Predictive Value (PPV): Measures the proportion
of correct positive predictions out of the total number of
positive predictions made by the model. PPV assesses the
reliability of positive predictions.

• Negative Predictive Value (NPV): Measures the propor-
tion of correct negative predictions out of the total number
of negative predictions made by the model. NPV assesses
the reliability of negative predictions.

The inclusion of PPV and NPV metrics is context-dependent.
Beyond overall model performance, understanding when the model
performs best or worst is crucial, especially in intrusion detection
scenarios. We provide confusion matrices for the best and worst
results to visually identify model strengths and weaknesses.

4.1 Experiments
This section summarizes the experiments conducted with the de-
veloped models:

• OnlyDoSProbe: Includes samples from NSL-KDD dataset
categorized as "normal", "dos", and "probe". All 41 available
features are considered.

• RandomForestIF: Considers the top 15 important features
from the NSL-KDD dataset determined by Random Forest.

• SHAPSNNIF: Utilizes the top 15 impactful features deter-
mined by SHAP (Sequential Neural Network).

• SHAPRNNIF: Uses the top 15 impactful features determined
by SHAP (Recurrent Neural Network).

• SHAPDRNNIF: Incorporates the top 15 impactful features
determined by SHAP (Deep Recurrent Neural Network).

4.2 Binary Classification Results
As shown in Table 8, the best-performing model is the SNN utilizing
SHAP-derived features, while the worst-performing model is the
DRNN using Random Forest-derived features. Across all models,
there is a common trend of high PPV values, indicating strong
precision for normal traffic predictions, but more challenges in

Table 8: Binary classification results of all models with dif-
ferent experiments

Model Experiment Accuracy (%) PPV (%) NPV (%)
SNN OnlyDoSProbe 91.74 96.45 87.09
SNN RandomForestIF 89.83 96.18 83.57
SNN SHAPSNNIF 94.04 96.27 91.84
RNN OnlyDoSProbe 85.48 98.03 73.14
RNN RandomForestIF 83.35 96.27 70.65
RNN SHAPRNNIF 89.74 98.41 81.20
DRNN OnlyDoSProbe 83.29 98.64 68.20
DRNN RandomForestIF 82.68 96.76 68.83
DRNN SHAPDRNNIF 86.52 97.31 75.91

predicting anomalies, particularly evident in models with LSTM
layers, as reflected in the NPV values.

4.3 Multiclass Classification Results

Table 9: Multiclass classification results of all models with
different experiments

Model Experiment Accuracy (%) PPV (%) NPV (%)
SNN OnlyDoSProbe 88.89 96.68 83.72
SNN RandomForestIF 88.22 96.94 81.36
SNN SHAPSNNIF 89.82 97.20 84.00
RNN OnlyDoSProbe 84.88 98.14 74.13
RNN RandomForestIF 83.49 98.30 72.02
RNN SHAPRNNIF 67.65 97.50 61.69
DRNN OnlyDoSProbe 82.31 97.49 71.26
DRNN RandomForestIF 79.78 97.53 65.58
DRNN SHAPDRNNIF 66.08 96.70 59.59

Similarly, in Table 9, the best-performing model is the SNN with
SHAP-derived features, while the worst-performing model changes
to RNN with SHAP-derived features. Multiclass classification and
confusion matrices confirm previous observations, with models
struggling primarily in distinguishing between DoS and Probe at-
tacks. Balancing sample differences could alleviate this issue.

4.4 Results on ESP32-WROOM-32
Asmentioned earlier, the twomost performantmodels in binary and
multiclass classification were converted and subsequently deployed
on the ESP32-WROOM-32 microcontroller. This microcontroller
features:

• Processor: Xtensa dual-core 32-bit LX6, 240MHz.
• Memory: 520KB SRAM and 4MB Flash Memory.

Evaluation was conducted in terms of inference time and model
resources. The results in terms of accuracy are omitted as they are
equivalent to the previously discussed metrics. The evaluation was
performed using 100 samples from the NSL-KDD dataset.

The two models exhibit similar inference times and model sizes.
The binary classification model demonstrates lower minimum and
maximum inference times compared to the multiclass classification
model, while the binary classification model has a lower average
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Figure 2: Confusion matrices for best and worst binary classification results

Figure 3: Confusion matrices for best and worst multiclass classification results

Table 10: Results of classification on ESP32-WROOM-32 microcontroller

Model Experiment TI Min TI Med TI Max Model in Bytes
SNN SHAPSNNIF Binary 0.226ms 3.198ms 10.478ms 8244B
SNN SHAPSNNIF Multiclass 0.238ms 3.107ms 10.498ms 8328B

inference time. Table 11 provides a comparison of obtained results
with related literature works involving IoT hardware testing.

4.5 Discussion
The binary classification results reveal that the SNN model utilizing
SHAP-derived features consistently outperforms other models in
terms of accuracy and positive predictive value (PPV). This suggests
that the selected features identified by SHAP are highly effective
for distinguishing normal traffic from anomalies. However, the
lower negative predictive value (NPV) across models indicates an
imbalance in the dataset considered.

The confusion matrices visually depict the model behavior, with
the best-performing model showing strong performance in cor-
rectly classifying normal instances but struggling with anomaly
detection, particularly evident in false negative cases.

In multiclass classification, the SNN model with SHAP-derived
features again emerges as the top performer. Despite challenges in
distinguishing between specific attack types like DoS and Probe,
this model demonstrates superior accuracy and PPV compared to
others.

The confusion matrices illustrate the difficulty in distinguishing
between certain attack categories, suggesting potential areas for
improvement such as dataset augmentation or model adjustments.

The deployment of models on the ESP32-WROOM-32 microcon-
troller highlights practical considerations for IoT applications. Both
binary and multiclass models exhibit comparable inference times
and model sizes, demonstrating feasibility for real-time inference
on resource-constrained devices.

Comparisons with literature models underscore the competitive
performance of our models on microcontroller hardware. Despite
limitations in memory and processing power, our models achieve
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Table 11: Comparison of the models developed with those present in the literature and installed on microcontrollers

Ref Model Classification Dataset TI Min Device Precision (%)
Proposed SNN (8244B) Binary NSL-KDD 0,226ms ESP32-WROOM-32 94.04
Proposed SNN (8328B) Multiclass NSL-KDD 0,238ms ESP32-WROOM-32 89.82
[3] CNN (6000KB) Multiclass ToN 1ms Google’s Edge TPU 98.4
[3] CNN (6000KB) Multiclass ToN 25ms ARM Cortex-A53 98.4
[4] CNN (106KB) Multiclass MQTT 1µs Cortex-A53 99.74
[4] CNN (4237B) Multiclass MQTT 2µs ESP32-WROOM-32 97.2
[9] D. Tree (8670B) Multiclass MQTT 1µs ESP32-WROOM-32 99.92

comparable accuracy to larger, specialized hardware like Google’s
Edge TPU. Overall, the proposed model has been evaluated on a
larger dataset with respect to [4] [9], which propose their work on
a dataset of MQTT-related threats. We acknowledge the limitation
in the accuracy of the proposed algorithm but we also want to
highlight the performance over multiple classes of the models.

5 CONCLUSIONS
In this research work, we have developed a decision engine for an
anomaly-based IDS using deep learning models, specifically feed-
forward and feedback neural networks. From our experiments, the
feed-forwardmodels demonstrated superior performance compared
to the feedback approaches. While the achieved precision levels are
significant, it is worth noting that more advanced approaches exist
in the scientific literature.

The proposed methodology provides guidelines on how to pre-
pare a robust and deployable model in a real IoT environment.
However, it is crucial to customize the IDS for the specific archi-
tecture of the IoT device in which it will be implemented. Each
IoT device has unique hardware characteristics and resource con-
straints, necessitating a targeted approach in IDS design.

We evaluated the performance of our models using samples from
the NSL-KDD dataset; however, conducting more realistic tests in
actual IoT environments would be desirable. This would involve
implementing the entire architecture described in the Background
section, including the necessary hardware and software compo-
nents for IDS operation.

Furthermore, looking ahead to sustained use in real-world sce-
narios, implementing a targeted reinforcement learning approach
could be beneficial. This would enable the IDS to dynamically adapt
to environmental variations and support extended periods without
the need for frequent model updates.

In conclusion, the work undertaken provides a solid foundation
for developing anomaly-based IDSs for IoT environments, highlight-
ing future challenges and opportunities to enhance the effectiveness
and adaptability of such systems. The goal remains to create robust
cybersecurity solutions optimized for the complex and dynamic
nature of IoT networks.
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